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On Stancu-Muhlbach Operators and
Some Connected Problems
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New approximation properties concerning Beta and Stancu-Muhlbach operators
are given. It is shown that both operators preserve Lipschitz constants. We also
give quantitative estimates for the approximation of Bernstein, Szasz, and
Baskakov operators by Stancu-Muhlbach operators, as well as for the approxi
mation of Gamma operators by Beta operators. By duality, these results may be
translated into quantitative estimates for the total variation distance from the
P61ya distribution to the binomial, Poisson, and negative binomial distributions.
(" 1993 Academic Press, Jnc.

l. INTRODUCTION

The positive linear polynomial operator defined by

n

P~Cf,x)= I !(kjn) H'n.k(X; et),
k~O

n EN, x E [0, I], et ~ 0, (I)

where f is a real function on [0, I] and

(
n)D;:d (x+iet)D~~~-1 (I-x+jet)

H'n dx; et) = ,
. k (I + et)( I + 2et) ... (I + (n - 1) et )

was introduced by Stancu [19,20], who studied, among other properties,
the convergence of P~! to f as n -+ CJJ and 0 ~ et = et(n) -+ 0, also providing
bounds for P~(f, x) - f(x) under several differentiability assumptions on f
Further results were given by Miihlbach [15, 16]. A generalization of p~

is considered in [2].
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Observe that we can write P~(f, x) = Ef(n -- I U~"), where E denotes
mathematical expectation and U~" is a random variable with the P6lya
Eggenberger distribution of parameters n, x, 1 - x, IX [8]. In the case IX = 0,
U~' 0 has the binomial distribution and P?' is actually the Bernstein
operator. A unified approach to operators associated with distributions
arising from urn models can be seen in [7].

On the other hand, the integral operator L', acting on the space of all
real measurable bounded functions on (0, 1), defined by

U(f, x) = rfeB) h;(B) dB,
o

IX> 0, X E (0, 1), (2)

BE(O,I), (3)

where h; is the density of the beta distribution with parameters x/a,
(l - X)/IX,

h;(B)={B(~, I :'x')} ~l BX/'~I(l_B)(I-X)/'~I,

was also considered by Mlihlbach, who provided a Voronovskaja-type
theorem and some other results [15]. If f is defined on [0, I] we shall use
the convention U(f, i) = f(i), i = 0, I, when necessary,

Operators slightly different from (2) were introduced and studied by
Lupas [12] who called them "Beta" operators, Khan [9] has considered
the case a = I/n and provided new approximation properties, In particular,
he has obtained bounds for U(f, x) - f(x) when f is continuous
or of bounded variation. Moreover, it is easy to see, by usual methods
[5,11,21], that for IX>O, XE(O, 1), and fEC 1(O, I)

IL'(f, x)- f(x)1 ~2 (IXX~~~X)Y/2 OJ (I'; CX~~~X)r2). (4)

On the other hand, as already remarked by Miihlbach, we have, for
IX> 0, n EN and any real function f on [0, 1]

(5 )

and this implies that P~f'~P~+If, whenever f is convex (a result
previously obtained by Stancu [20] in a different way),

Moreover, from (5) we have, for x E (0, t)

P~(f, x) - U(f, x) =r {P?'(f, B) - f(B)} h;(B) dB. (6)
o

This formula has some consequences which apparently have not been
pointed out so far. Thus, if fE C[O, I] then P~(f, x) -> L"(f, x) (as n -> 00)
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(this also follows, by the Helly-Bray theorem, from the weak convergence
of n - J U~·, to the beta distribution with parameters x/a, (l - x )/a [6]).
Also, each (local or uniform) bound for P~(f, x) - f(x) can be used to give
bounds for P~(f, x) - L'(f, x). In particular we have the following result:
If f E CEO, 1] has a second derivative I" measurable and bounded on (0, 1)
then, for any a> 0 and x E (0, 1)

I fllim n{ P~(f, x) - U(f, x)} = -2 1"(8) 8(1 - 8) h;(8) d8.
n_ ex 0

In fact this follows from the classical Voronovskaja's theorem by applying
the dominated convergence theorem, since [14]

In this paper, we provide further approximation properties for both p~

and L'. The main results are stated in the next section. Proofs and the
necessary supporting results are given in Section 3.

2. MAIN RESULTS

Denote by Lip A Jl. the set of all real valued functions f defined on [0, 1]
such that

If(x) - f(y)[ ~ A Ix - yiP,

where A> 0 and Jl. E (0, 1].

x, Y E [0, I],

THEOREM 1. For f E CEO, 1], the three following statements are
equivalent:

(a) fELipAJl..

(b) P~fE LipA Jl.for all a >0 and n = I, 2, ....

(c) UfE LipA Jl. for all a> O.

THEOREM 2. Let n be a fixed integer and let f be a real boundedfunction
on [0, 1]. For a> 0 and x E [0, I]

where 0)2(/;') is the second modulus of continuity of f Therefore, the
convergence (as a -+ 0) is uniform.
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THEOREM 3. Let m be a fixed integer and let f be a real measurable
bounded function on (0, CIJ). For f3 > x > °

- fJ ' , (5m + 7)x
ICi'" (j(f3u), xlf3) - GmU, x)1 ~ IIf II 2f3 '

H'here G", is the Gamma operator defined by

(mix)'" J-xG (f' )=" f(O) em - I --mOix dO
m ,x (m _ I)! 0 e .

Therefore, the convergence (as f3 -> CIJ) is uniform on each bounded interval
(0, a).

Gm is called Gamma operator in [to, II] for instance, but it differs
substantially from the "Gamma" operator as defined and studied by Muller
and Lupas [13,17,18].

THEOREM 4. Let m be a fixed integer and let f he a real bounded
function on [0, CIJ). For n > x > °

IP;';,7111U(nu), xln) - B':,U, x)1 ~ Ilfll 5(m + 3 )x,
2n

where B~, is the Baskakov operator defined hy

* _x (m + k - I) xk

B",U, x) - k~O f(klm) k (l + X)"'+k'

Therefore, the convergence (as n -> cx)) is uniform on each bounded interval
[0, a].

THEOREM 5. Let m and f be the same as in Theorem 4 and suppose that
the non-negative parameter a depends upon n in such a way that a(n) =

o(n I) (n -> CIJ). Then, for n > x > °
f

x 2 I)ax(n-x),
IP~nn( (nu), xln) - S",Cf, x)1 ~ 4 Ilfll -+ 2m w 2(j; m

n I +a

where S", is the SZGsz-Mirakyan operator defined hy

x (mx)k
S",Cf, x) = e ",x L f(klm) -k-'-'

k~O .

Therefore, the convergence (as n -> CIJ) is uniform on each bounded interval
[0, a].
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Theorems 4 and 5 give accuracy to results early noticed by Stancu
[20,21]. Theorem 5 extends Theorem 3(a) in [3]. Theorems 2-5 and other
analogous results (cf. [3, Theorems 2 and 3] and [4, Theorems 5 and 7])
approximate certain Bernstein-type operators by other ones. As far as such
operators can be represented as mathematical expectations and the results
hold for any real continuous and bounded function (on the corresponding
interval), these are equivalent, by duality, to statements of convergence for
the underlying probability distributions. Duality works in both directions.
Thus, Theorem 3 will be shown by obtaining previously a bound for the
total variation distance between the probability measures involved
(Lemma 1 below), and Theorem 3(a) in [3], which follows from an
estimate of the rapidity of convergence in Poisson theorem, plays a
fundamental role in the proofs of Theorems 4 and 5. Conversely, the
bounds in Theorems 2, 4, and 5 depend upon f only through its norm, and
therefore these results provide quantitative estimates for the total variation
distance from the P61ya distribution to the binomial, negative binomial,
and Poisson distributions (see also [4]).

COROLLARY. (a) For nfixed, a>O and XE [0, I]

~ [ (n) k kl ax(l-x)k7:0 w".Ax;a)- k x (1-x)" . ~811(11-1) I+a .

(b) For m.fixed and I1>X>O

~ )11' (~.~)_(m+k-I) x
k

1~5(m+3)X
L, mn. k' k (I + ')'" + k '" 2 .
k~O n mn x n

(c) For m.fixed, n>x>O andO~'1.='1.(I1)=o(n ') (11-> ex))

Ix I. (X) . (mx)kl 4x o'1.x(n-x)W -' a - e m.\ --- ~ - + 8nr ----'-
m". k , k' '" 1 + .

k~O n . n a

3. PROOFS

Proof of Theorem 1. In view of [10, Theorem 3], to prove (a) implies
(b) it suffices to see that U~" has the splitting property. To this end
consider, for °< x < y < I, a random vector (V,,, R,,) with the discrete
distribution

. ( ;')( ('k
X

)')( "('.i'i')
P( v" = J, R" = k) = ----'---(--;-c/~,-)-----'-

64074. 1-5
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for j, k = 0, 1, ... with j + k ~ n. It is easy to see that Vn (resp. Vn + R n ) has
the same distribution as U,:., (resp. U;;-'). Finally

ERn = E( Vn+ Rn) - EVn= EU;," - EU;:" = n(y -x),

as desired. Now, for rJ. > 0, P~f --> L'f (as n -->x) and therefore (b) implies
(c). Similarly, since L ~r --> f (as rJ. --> 0) we have (c) implies (a).

An alternative proof runs as follows: Khan [9] has shown that (a) is
equivalent to (c) with rJ. = lin, n = 1, 2, ... , but the same argument works if
rJ. is taken as a positive continuous parameter. In view of (5), the proof is
finished by using the corresponding property for the Bernstein operator
[1 ].

Proof of Theorem 2. Apply (4) to the Bernstein polynomial g = P~f

taking into account that w( g', b) ~ II gil II b and II gil II ~ n(n - 1) W2(f; lin).

Proof of Theorem 3. By a change of variable we obtain, for f3 > x > 0

L'/m/I(f(fJU), x/f3) =r f(8) h~,j8) d8,
o

where

h~l.fI(8)={B(m, ~: -m)} 1 (l1f3)(81{3)m-I (1-81{3)(mflix)

for 8 E (0, {3) and 0 otherwise. Therefore

m- t

where

X(8)= (mlx)m 8m-Ie-mll/x 8 0
gm (m-1)! ' >,

and the proof will be complete as soon as we show that the following
lemma holds true.

LEMMA 1. For {3>x>O

fx x x (5m+7)x
o Ih m./1(8) - gm(8)1 d8 ~ 2{3 .
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Proof of Lemma 1. We have

65

and

To estimate the first term on the right-hand side of (7) note that, for
8 E (0, fJ)

(
m)m 8m-l

Ih:. fi(8)-g:(8)1 = ~ (m-I)! A(8),

where

The three terms on the r.h.s. of (8) are respectively bounded by

I ( 8)mfi/.<I I ( 8
2
)m

fi1
XIe - mOlx 1- emOlx 1-Ii ~ e - mO;'x 1- 1 - fJ2

and

I ( 8)m+'1 ( 8)m
fii

X-m-1 m( iX)1- 1-- 1-- n 1--
fJ fJ i = I mfJ

(m+I)8( 8)(mfi;,xl-m.~1 m ( iX)
~ 1-- n 1--.

fJ fJ i= I mfJ

(8)
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The conclusion follows by using elementary properties concerning the
gamma and beta functions.

Proof of Theorem 4. We shall use the notations in the former proof.
The relation

k=O, I, ...

clearly implies that B,~f=Gm(S"J).

On the other hand, by a change of variable, we have, for n > x > 0,

I"P~;:"'U(nu), xln) = P?'",U(nu), Oln) h,~. ,,(0) dO.
o

Thus, we can write

IP~;::II/U(nu), xln) - B~,(f, x)1

~ f IP?'II/U(nu), Oln) - S",(f, 0)1 h~/,I'(O) dO

+If S",(f, 0) h~" ,,(0) dO - tC£ SIt/(f, 0) g~,(e) dO I· (9)

Now, by Theorem 3( a) in [3], the first term on the r.h.s. of (9) is bounded
by 4 Ilfll xln and the second one (which is just IUim"Um(nu), xln)

GmU"" x)l, where j;" = S"J) does not exceed, by Theorem 3 above

IIS"JII (5m~ 7)x ~ Ilfll (5m~7)x.

Proof of Theorem 5. By a change of variable we have, for n > x > °

I"P~,,Jf(nu), xln) = 0 P?'",U(nu), Oln) h~/"(Oln)(lln) dO,

where h~/n is defined in (3), and therefore

IP~II/U(nu), xln) - S",(f, x)1

~ I" IP~~"U(nu), Oln) - s",u, 0)1 h~i"(Oln)( lin) dO
o

+IL {SIt/(f,fI)-S",(j:X)}h~/"(Oln)(l/n)del· (10)
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Again by Theorem 3(a) in [3] the first term on the r.h.s. of (10) is bounded
by 4 II/II xln. The second one can be easily estimated by usual methods and
it does not exceed

(
IXX(n-x»)li

2
( , (IXX(n-x»)li

2
)

2 1+ IX W (Smf) , 1+ IX .

The proof is finished by observing that w((Sm/)',c5)~II(S"Jnlc5and
II (S"Jrll ~ m

2w2(f; 11m).
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